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Abstract. We study the problem of constructing local absorbing boundary con-
ditions (ABCs) for the numerical simulation of n-dimensional lincar acoustic
and c¢lcctromagnelic waves in unbounded domains. Employing the technique of
dimensional splitting, we reduce the construction of the ABCs for the original
n-D equation to sccking for an ABC for the one-dimensional wave problem,
Then, applying the Laplace transform in time as well as using spline interpola-
tion for the initial data, we obtain an infinite family of functions that approxi-
mate the far-ficld solution with higher and higher accuracy. These functions arc
uscd as ABCs. Duc to the property of compactness of supports of the splines,
the boundary conditions appear 1o be local both in time and in space, which is
extremely important for their numerical implementation. Yet, these ABCs arc
uncritical to the shape of the antificial boundary and therefore usable for simu-
lating a vast number of practical wave problems in domains of drastically com-
plex geometries. The resulting boundary value problems are well-posed in the
scnse of existence, uniqueness and stability of solution. Results of the numeri-
cal experiments confirm the theoretical study.

1 Introduction

Numerical solution to differential problems in unbounded domains requires introduc-
ing a finite computational domain enclosed by an artificial boundary. Indeed, all the
matrices and vectors employed to compute the solution must be of finite sizes, and
therefore the necessity in truncation of the original domain is dictated by the evident
limitations on the computer memory. Hence, it is required 1o impose adequate bound-
ary conditions for simulating the solution at the boundary points. The adequacy of the
boundary conditions implies that 1) the resulting boundary value problem (BVP) must
be well-posed in the sense of existence, uniqueness, and stability of solution, and 2)
the error between the solutions to the original Cauchy problem and the resulting BVP
should be as small as possible in the domain of interest. Boundary conditions satisfy-
ing the aforesaid requirements are often called artificial boundary conditions (ABCs)
[17).

A special class of ABCs is known as one-way, or absorbing, or non-reflecting
boundary conditions (NRBCs) 3, 16]. These boundary conditions appear when study-
ing various wave phenomena in such fields of scientific computing as geophysics (1,
4, 8], theory of elasticity [5, 10, 13], computational fluid dynamics (3, 4, 15], and



350 Denis Filatov

others. NRBCs are derived in such a manner that permit waves propagating outwarg
the computational domain only, while no propagation towards the interior is allowed,

For the last three decades there have been developed a whole series of differen
methods for the construction of NRBCs [2, 4, S, 8, 10, 11, 13-15] (see also [17)),
However, all of them lead to boundary conditions that suffer from some or other djs.
advantages. For example, many methods provide BCs that can be used with a planar
(i.e.. rectangular) artificial boundary only; others lead 1o NRBCs that are non-loca|
either in time or in space, or even both, and hence these BCs are unrealisable from the
computational standpoint; third group of methods is oriented to solving a particular
class of equations, and therefore fails when applying to problems of other types.

In this paper we present an advanced mecthodology for the construction of non-
reflecting boundary conditions. The key idea consisls in the employment of the tech-
niques of operator factorisation and dimensional splitting {12]. Unlike all other
NRBCs, ours are geometrically universal and besides appear local both in time and in
space. These properties allow to use the approach when numerically solving a wide
spectrum of practical wave problems in domains of extremely complex geometries [7].
In addition, the constructed boundary conditions are more accurate than many others,

e.g., those derived in [4].

2 Problem Formulation

Consider the n-dimensional wave equation
ou "
Aun?—a Au=f, (x,t)eR x (0,40) (1
subject to the initial condition

ul:.o-g(x)' %':—l =0 . (2)

Here u =u(x,t) is the function to be sought, a = a(x,t)z 0 is the wave velocity, A
is the Laplacian in x, and f = f(x,r) denotes the sources. Let the computational
domain be an open region Q c R" with a piecewise smooth boundary I'. We assume
a = const outside Q , as well as supp f < Q. In order to solve problem (1)-(2) nu-
merically, it is required to construct a differential operator B for the boundary condi-
tion 1'3u|“r =0; upon this, the operator B must be derived in such a manner that

waves propagating from Q leave the domain without reflections to the inside, that is
the boundary condition must be non-reflecting.
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3 Construction of the ABCs

We shall construct the boundary operator B in two steps. At the first step we employ
the method of dimensional splitting [12]: we choose some i from the range [l,...,n],

freeze the coordinates {x, }:-; ot and consider equation (1) on I' with respect to x,

only, i.e.

2 2
A"E?_a — =0, (x,/))ex(0,+x), {"‘};-u-: are fixed . 3)

At the second step, in order to satisfy the requirement of no reflection of the boundary
condition, we factorise the operator 4, onto the incoming and outgoing compo-

nents— A, = A’ A7 —and rewrite equation (3) the form

A,'A,'u=(§+a£—J(i—ai)u=0 : (4)

1

It is important to emphasise that we decoupled the incoming and outgoing waves in
the original, physical space R", without involving any additional techniques like
Fourier transform [4] or others. Therefore, we avoided imposing undesired restrictions
on the shape of the boundary I', and hence, on the applicability of the subsequent

NRBC:s too.
The derivation of the boundary operator is now obvious: if the incoming wave at

the point x, (all the other x,’s are fixed) is represented by the positive component
A’ , then we prohibit it defining 4 = E (here E is the identity operator) and obtain

B,u';rA,'A,'u=EA‘uz(—a--a—a-]u=0 : (5)

o ox

otherwise, if the incoming wave corresponds to A4, it holds B =0,+add, .

In fact, the construction of the one-dimensional NRBC is complete, and now we
can derive the general n-D absorbing boundary condition. However, before doing this
let us construct a family of 1D non-reflecting boundary conditions basing on the origi-
nal BC (5). This family will be derived in such a way that its members will be ap-
proximate solutions to equation (5) specially adapted to finite difference implementa-
tion. So, involving the technique used in [6], we apply to (5) the Laplace transforfn in
time and then approximate the initial condition g from (2) by a family of splines.

Next, assuming the image of u to be bounded in x, in the dual space, we apply the
inverse Laplace transform and thus come to an infinite family of approximate solu-
tions to equation (5) in the physical space [7):
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‘o AR 7 (0]
u[°]=u“+z:a"—5- y T, =hy—h, W =§g, ke{O}UN. (6)

Here m21 is the spline order. Consequently, the general n-dimensional absorbing
boundary condition has the form

['“'](x)— [|(x)+zap i Zs" ou lsl(x)

p=l ' 12l l

, xert, (7)

where s, = 5, (x) is the sign function having the value +1 if the incoming wave at the

point x e " in the direction x, is given by the operator 4", and -1 otherwise (see

formula (5)). For the errors produced by solutions (7) on the boundary we have the
estimates

sl pel : j=li=lasj

. IS"["" SOBFEES GO0 o ] | ®

f“"Jl(l) » A G)

where §, = max I and &, = max

P

. The following proposition holds.

e

Proposition 1. For every m 21 the corresponding wave boundary value problem is
well-posed in the sense of existence, uniqueness, and stability of solution.

We shall omit a formal proof of this statement, and only mention that it can be done
by means of functional analysis and the theory of generalised functions. For further
studies on well-posedness of the resulting BVPs the interested reader may refer to [7].

Let us make two important remarks. First of them concems the use of splines when
approximating the initial data g in the Laplace-transformed equation (5). Specifi-
cally, it is essential that we employed compactly supported basis functions rather than
some infinitely supported ones [15]. Due to this we again avoided restrictions on the

shape of the boundary I', and so derived a family of geometrically universal NRBCs;
in addition, these BCs are local and adapted to numerical implementation in time.

Another remark relates to the factorisation of the operator 4, in (4) and the subse-
quent prohibition of the incoming wave at the boundary point. Namely, it can easily be
observed that having defined 4 =E (or A4 =E ) we, properly speaking, disre-
garded the second order of the temporal derivative of the wave equation and thus
reduced it from two to one. Therefore, the resulting boundary conditions (7) serve
only in case of zero initial condition 3,u|_, = h(x), as defined in (2). However, to
generalise these NRBCs one may perform a preliminary change of variable (with
respect to the function u) and to transfer 4 # 0 to the right-hand side of equation (1).

This will allow to subsequently take into account the presence of the non-zero initial
data and hence to construct a more general version of the operator 8 [7).
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4 Numerical Results

We tested the developed method having performed several experiments on functional-
ity and efficiency of the constructed NRBCs. For clearness of presentation of the re-
sults we considered the case n=2.

First of all we compared our boundary conditions with those derived in the classical
paper by Engquist and Majda [4]. For this we solved the original Cauchy problem (1)-
(2) and a few boundary value problems with various boundary conditions. Specifi-
cally, we tested the lowest-order BC (7) corresponding to m=1 and the first two
NRBCs from [4] analysed by the authors in detail. The artificial boundary was sup-

posed to be the straight line ['={x,=0} , the domain of interest was
Q=(-6.6)x(0,6) , and we chose g(x)=sin’n (x +0.5)sin’n (x,-0.5) ,
suppg c [-0.5,0.5]x[0.5,1.5], a=1, Ax, = Ax, = 5t =0.05. To discretise the equa-

tion in Q we used the standard second-order “wave” finite difference scheme [9,
p. 228), while on the lateral boundary we imposed the zero Neumann boundary condi-
tion. At each time moment on I' we computed maximum of the reflected wave related
to maximum of the incident wave.

In Fig. 1 there are two wave profiles corresponding to the solutions to the infinite-
domain problem and the BVP with BC (7). It can be seen that the second profile is
similar to the first one, with a small reflection as well. Expressed numerically, Table |
summarises L,-norms of the relative error for different angles of wave incidence. One

may observe that there are considerable benefits in the precision of solution, espe-
cially for large values of 0 , under substantial geometrical flexibility of our NRBCs.

Table 1. Planar artificial boundary: relative error (in %) for differcnt angles of wave incidence

Angle (0) BC (7) 1* E-M 2™ E-M
0° 2.55 6.06 2.10
10° 2.50 6.07 2.18
20° 2.56 6.33 2.40
30° 3.55 7.91 3.14
40° 5.65 10.76 4.22
50° 6.50 15.40 6.11
60° 7.28 21.99 9.54
70° 7.53 30.36 16.14

To try the method on complex geometries, we considered the domain Q shown in
Fig. 2 (top) and repeated the experiments computing the relative error between ampli-
tudes of the reflected and incident waves. As in the case of planar artificial boundary,
there was a weak reflection from I', and the error did not exceed 2.5% for 8 =0° and

7.9% for 6 = 70°. At the bottom of Fig. 2 we show the numerical solutionat 7 =0.33
as well.
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Fig. 1. Planar artificial boundary: solutions to the original Cauchy problem (top) and
the resulting BVP (bottom) at T =2.0
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Fig. 2. Experiments with complex geometries: the domain of interest (top) and
the BVP solution at 7' =0.33 (bottom)
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5

Conclusions

We have developed an advanced methodology for the cons.!ruction of non-reflecting
boundary conditions for numerical solution to the n-dimensional wave equation. The
derived NRBCs lead to well-posed boundary value problems, provide essential gains
in the accuracy of solution, and possess substantial geometrical flexibility in compari-
son with other ABCs. Numerical results confirmed the functionality and efficiency of
the approach. We expect the methodology admits generalisations to otl}cr types of
differential problems bound with the question of absorbing boundary conditions.
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